Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 6546, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764270

ABSTRACT

Acute myeloid leukemia (AML) is a malignancy of immature progenitor cells. AML differentiation therapies trigger leukemia maturation and can induce remission, but relapse is prevalent and its cellular origin is unclear. Here we describe high resolution analysis of differentiation therapy response and relapse in a mouse AML model. Triggering leukemia differentiation in this model invariably produces two phenotypically distinct mature myeloid lineages in vivo. Leukemia-derived neutrophils dominate the initial wave of leukemia differentiation but clear rapidly and do not contribute to residual disease. In contrast, a therapy-induced population of mature AML-derived eosinophil-like cells persists during remission, often in extramedullary organs. Using genetic approaches we show that restricting therapy-induced leukemia maturation to the short-lived neutrophil lineage markedly reduces relapse rates and can yield cure. These results indicate that relapse can originate from therapy-resistant mature AML cells, and suggest differentiation therapy combined with targeted eradication of mature leukemia-derived lineages may improve disease outcome.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Neoplasm, Residual/metabolism , Cell Differentiation , Humans , Leukemia, Myeloid, Acute/genetics , Neoplasm, Residual/genetics
2.
Nat Commun ; 12(1): 4164, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230493

ABSTRACT

Spi-1 Proto-Oncogene (SPI1) fusion genes are recurrently found in T-cell acute lymphoblastic leukemia (T-ALL) cases but are insufficient to drive leukemogenesis. Here we show that SPI1 fusions in combination with activating NRAS mutations drive an immature T-ALL in vivo using a conditional bone marrow transplant mouse model. Addition of the oncogenic fusion to the NRAS mutation also results in a higher leukemic stem cell frequency. Mechanistically, genetic deletion of the ß-catenin binding domain within Transcription factor 7 (TCF7)-SPI1 or use of a TCF/ß-catenin interaction antagonist abolishes the oncogenic activity of the fusion. Targeting the TCF7-SPI1 fusion in vivo with a doxycycline-inducible knockdown results in increased differentiation. Moreover, both pharmacological and genetic inhibition lead to down-regulation of SPI1 targets. Together, our results reveal an example where TCF7-SPI1 leukemia is vulnerable to pharmacological targeting of the TCF/ß-catenin interaction.


Subject(s)
GTP Phosphohydrolases/metabolism , Membrane Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins/metabolism , T Cell Transcription Factor 1/metabolism , Trans-Activators/metabolism , beta Catenin/metabolism , Animals , Bone Marrow Transplantation , Carcinogenesis/genetics , Disease Models, Animal , Female , GTP Phosphohydrolases/genetics , HEK293 Cells , Humans , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mutation , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogenes , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Mas , Proto-Oncogene Proteins/genetics , T Cell Transcription Factor 1/genetics , T-Lymphocytes/metabolism , Trans-Activators/genetics , Transcriptome , beta Catenin/genetics
3.
Blood ; 136(8): 957-973, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32369597

ABSTRACT

Modulators of epithelial-to-mesenchymal transition (EMT) have recently emerged as novel players in the field of leukemia biology. The mechanisms by which EMT modulators contribute to leukemia pathogenesis, however, remain to be elucidated. Here we show that overexpression of SNAI1, a key modulator of EMT, is a pathologically relevant event in human acute myeloid leukemia (AML) that contributes to impaired differentiation, enhanced self-renewal, and proliferation of immature myeloid cells. We demonstrate that ectopic expression of Snai1 in hematopoietic cells predisposes mice to AML development. This effect is mediated by interaction with the histone demethylase KDM1A/LSD1. Our data shed new light on the role of SNAI1 in leukemia development and identify a novel mechanism of LSD1 corruption in cancer. This is particularly pertinent given the current interest surrounding the use of LSD1 inhibitors in the treatment of multiple different malignancies, including AML.


Subject(s)
Cell Transformation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Histone Demethylases/metabolism , Leukemia, Myeloid, Acute/pathology , Snail Family Transcription Factors/physiology , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , HEK293 Cells , HL-60 Cells , Histone Demethylases/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Transgenic , Protein Binding , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
4.
Cell Stem Cell ; 25(2): 258-272.e9, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31374198

ABSTRACT

Tumors are composed of phenotypically heterogeneous cancer cells that often resemble various differentiation states of their lineage of origin. Within this hierarchy, it is thought that an immature subpopulation of tumor-propagating cancer stem cells (CSCs) differentiates into non-tumorigenic progeny, providing a rationale for therapeutic strategies that specifically eradicate CSCs or induce their differentiation. The clinical success of these approaches depends on CSC differentiation being unidirectional rather than reversible, yet this question remains unresolved even in prototypically hierarchical malignancies, such as acute myeloid leukemia (AML). Here, we show in murine and human models of AML that, upon perturbation of endogenous expression of the lineage-determining transcription factor PU.1 or withdrawal of established differentiation therapies, some mature leukemia cells can de-differentiate and reacquire clonogenic and leukemogenic properties. Our results reveal plasticity of CSC maturation in AML, highlighting the need to therapeutically eradicate cancer cells across a range of differentiation states.


Subject(s)
Cell Differentiation/physiology , Cell Transdifferentiation/physiology , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/physiology , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , Carcinogenesis , Cell Plasticity , Cells, Cultured , Humans , Leukemia, Myeloid, Acute/metabolism , Mice , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Tretinoin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...